

YEAR 12 MATHEMATICS SPECIALIST SEMESTER TWO 2017

QUESTIONS OF REVIEW 7: Differential Equations

By daring & by doing

Name:		
Time: 35 minutes	Mark	/28

Thursday 31st August Calculators assumed.

1. [10 marks – 3, 3, 2 and 2] – based on 2016 WACE paper

This slope field represents the family of polynomials y = f(x) + c with f'(2) = 0 and $f'(0) = \frac{1}{2}$

a) Explain why f'(x) takes the form $f'(x) = a(x+b)^2 \text{ and evaluate } a \text{ and } b$

of (n) is a transformation of
$$n^{2}$$

with form $f(n) = A(n+b)^{2}$
 $f'(n) \sim a(n+b)^{2}$
 $b = -2$
 $a = \frac{1}{2}$

b) Use Euler's method, with an increment of $\partial x = 0.2$ to estimate f(0.6), starting from f(0) = 3

X	y = f(x)	дх	∂y ·
0	3	0.2	1×0.2= 0.1
0.2	3.1	0.2	\$x1.820.2 = 0.081
0.4	3.181	0.2	\$x1.6 x0.2 = 0.064
0.6	3.245	-	-

c) Determine
$$f(x)$$
 given $f(0) = 3$

$$f'(n) = \frac{1}{8}(n-2)^{2}$$

$$f(n) = \frac{1}{8}(n-2)^{3} + C$$

$$= \frac{1}{24}(n-2)^{3} + \frac{10}{3}$$

d) Compare the actual value of f(0.6) with your estimate in (b) and explain the difference.

$$J(0.6) = \frac{1}{24} (-1.4)^3 + \frac{10}{3} = 3.219$$

Euler's method user a series of tangents to approximate
the curve. In this, targents are above a capvex curve.
 $Sn = 0.2$ is quite large.

2. [18 marks – 2, 4, 2, 1, 1, 1, 1, 3, 1, 1 and 1] – based on 2016 SA Specialist paper A country's population growth depends on the internal growth rate r and the number of immigrants I, so that $\frac{dP}{dt} = rP + I$

(a) Use separation of variables to show that
$$\int \frac{1}{P + \frac{I}{r}} dP = \int r dt$$

$$\frac{df}{dt} = \Lambda P + 1 = \Lambda \left(P + \frac{1}{\Gamma} \right)$$

$$\frac{dP}{P + \frac{1}{\Gamma}} = \Lambda dt$$

$$\frac{1}{p+\frac{1}{p+1}}dP = \int r dt$$

(b) Hence solve the differential equation $\frac{dP}{dt} = rP + I$ and show that

$$P(t) = P_0 e^{rt} + \frac{I}{r} (e^{rt} - 1)$$
 where $P(0) = P_0$

d.e.
$$\Rightarrow ln|P+\frac{1}{r}| = rt + c$$

 $\therefore P+\frac{1}{r} = e^{rt+c} = C_{r}e^{rt}$

$$P(0) = P_{0} \Rightarrow P_{0} + \overline{I} = C_{1}$$

$$\therefore P + \overline{I} = e^{rt} \left(P_{0} + \overline{I} \right)$$

$$\therefore P = e^{rt} P_{0} + e^{rt} \cdot \overline{I} - \overline{I}$$

$$= e^{rt} P_{0} + \overline{I} = e^{rt} \left(e^{rt} - I \right)$$

A country in 2017 has $P_0 = 24.5$ million, I = 0.21 million and r = 0.0062

(c) Estimate the population in 5 years time (the year 2022)

$$P(S) = 24.5e^{0.0062 \times S} + \frac{.21}{.0062} \left(e^{0.0062 \times S} - 1 \right)$$

(d) Estimate the population in 50 years time

(e) Identify one assumption in these estimates

(f) How reliable is the model in the longer term?

A logistic equation for this country's population is derived from $\frac{dP}{dt} = 0.016P \left(\frac{45-P}{45}\right)$ with a 2017 population of $P_0 = 24.5$ million and an increased r value to include immigration.

(g) What is the maximum population?

(h) Estimate the population in 5 years time (2022) and after 50 years

$$P(t=5) = 25.39$$
 million
 $P(t=50) = 32.70$ million

ClassPal:
$$M = 45$$
 $P_0 = 24.5$
 $K = 0.016/45$
or: $A = 0.016$ $5 = \frac{0.016}{45}$
 $P_0 = 24.5 \Rightarrow C = 2.975 \times 10^{-4}$

(i) What is the major difference between these logistic results and the earlier model?

A combined equation has $\frac{dP}{dt} = 0.0062P\left(\frac{45-P}{45}\right) + 0.21$

- (j) Draw the solution curve with $P_0 = 24.5$ million on this slope field.
- (k) How do the results from this model compare with the logistic model?

Have higher limit (& 65 million) or may askedly continue to increase.

